. This version is made  available under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International (CC-BY-NC-ND 4.0) license. For

more information, visit the Creative Commons website.

A spatial healing metric for wound healing
modeling

Ekrem Ekici' and Ahmed S. Dalag2*

nterdisciplinary Research Center for Biosystems and Machines, King
Fahd University of Petroleum & Minerals, Dhahran, Saudi Arabia.
2Department of Bioengineering, King Fahd University of Petroleum &
Minerals, Dhahran, Saudi Arabia.

*Corresponding author(s). E-mail(s): ahmed.dalaq@kfupm.edu.sa;
Contributing authors: ekrem.ekici@kfupm.edu.sa;

Abstract

We propose a new healing metric for improved tracking of the wound healing
process across arbitrary wound geometries. A Fickian diffusion equation with
a logistic nonlinear term is solved using the open-source finite element frame-
work FEniCSx. The model is verified and calibrated by comparing finite element
simulation results with experimental data from the literature, focused on the
circular rabbit ear wound. To address the limitations of fixed-threshold metrics,
we introduce a spatial healing metric, 3, which captures the average cell density
across the wound domain. This metric reflects healing differences arising from
geometry and variations in diffusion and mitotic parameters. Parametric sweeps
over the diffusion coefficient—mitotic generation (D—s) space reveal that different
parameter combinations can yield the same healing time but with quite different
spatial profiles. We also study multiple wound geometries to validate the appli-
cability of the proposed metric. Our results demonstrate that the proposed (3
metric exposes limitations of the classical threshold-based approach, particularly
under conditions of high diffusion and low mitotic generation, where traditional
metrics suggest full healing despite spatial discrepancies in cell density.
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1 Introduction

Among the most seminal reports in the field of wound healing, and particularly using a
continuum approach, the classical mass balance model considers the wound as a control
volume, where cell proliferation and cell growth (mitotic generation) occur at the
wound location [1-4]. The edge of the wound (the unwounded part) gradually migrates
towards the center of the wound, driven by diffusion mechanism, and proliferating cells
reproduce at their current locations via a logistic profile. This model also accounts for
contact inhibition, where proliferated cells jam at the wound and thus slow the cell
buildup, especially at the center of the wound [1].

Considering a Fickian diffusion with logistic proliferation, the wound healing pro-
cess depends on two parameters: the diffusion coefficient and the mitotic generation
rate along with the wound size. This simple model (i.e. diffusion-mitotic generation [1])
provided the milestone upon which other investigators could build by adding important
biological mechanisms, thereby increasing the model’s fidelity. Among the first updates
to this model was the addition of a chemotactic flux to capture up-gradient migration
driven by growth factor concentration [8]. Furthermore, to account for extracellu-
lar matrix (ECM) remodeling [9, 10], a three-field model was introduced comprising
three partial differential equations representing cell density, ECM density, and growth
factor concentration, where their interplay governs the wound healing process [11].
In addition, wounds that extend beyond the epidermal layer involve mechanical and
viscoelastic effects during closure and so a string-based models were introduced to cap-
ture wound contraction forces [12, 13]. The model was further enhanced by including
blood vascularization (angiogenesis) [14-16], inflammation and debris clearance [17],
and even endogenous bioelectric fields [18, 18]. One of the first finite element models
proposed in [19]. The transport of oxygen and growth factors of epidermal cells are
coupled and the model predicted the total healing time for circular, rectangular and
ellipsoidal wounds. This model is further extended to model dermal wound contrac-
tion [16], angiogenesis and wound closure [20, 21], and surgical wounds [22] by adding
several new parameters.

While these additions represent major advancements in wound healing modeling,
they introduce new parameters that are often phenomenological in nature. Each of
these parameters requires calibration and a proven and justified link to experimentally
measured data [19, 21, 23]. To this end, chemical, localized mechanical, spatial/struc-
tural, and electrical measurements must be monitored in real time for healing wounds.
Nevertheless, the current literature is quite scarce in such data, as most datasets are
limited to wound radius or healing percentage over time (Fig. 1), along with image
snapshots of wounds from mainly animal models and some human subjects [6, 24—
26]. In addition, random motility of cells, growth factor signaling, small-scale traction
forces, and ECM effects may, to some extent, be lumped into the diffusion term and
the rate of mitotic generation introduced in Ref [1].

Therefore, in this work, we revisit the seminal model in [1], applied a finite element
scheme to enable multidimensional analysis, and optimize its computational perfor-
mance. We aim to capture the kinematics of wound healing, that is, the deformations
and rates at which the wound and its boundaries close during the healing process.
This kinematics are, in essence, the manifestation of underlying wound dynamics that
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Fig. 1: (a) Wound healing progression in a rat animal study over 0-20 days (adapted
from [5]). (b) Wound radius over time in an ear wound rabbit case (data are adapted
from [1]), showed a tracking ratio suitable for circular wounds. (¢) Wound area reduc-
tion ratio, ideal for irregular wounds (data are for a square wound in a rat subject,
adapted from [6]). (d) Different wound geometries, including: circular (adapted from
[5]), square (adapted from [6]), and irregular (adapted from [7]).

have been the focus of earlier, more mechanistic models (e.g., models of vascularization
[14-16], ECM remodeling [9, 10], growth factor signaling [8, 11], and contractile forces
[12, 13]). Since most available wound-healing datasets are limited to observational
snapshots (e.g., wound area or radius over time) [6, 24-26], they are particularly suited



for calibrating kinematic wound-healing models based on diffusion—mitosis processes.
Being a single PDE with only a few parameters lends itself naturally to the finite
element scheme, making the model tractable for extension to arbitrary 2D and 3D
wound morphologies. Moreover, this diffusion-mitotic generation model admits closed-
form solutions in simple 1D Cartesian and axisymmetric cases [27], allowing two-way
verification of numerical simulations before proceeding to full fledge parametric or
calibration studies.

To this end, we aim to demonstrate how a finite element approach, relying on a
minimal number of parameters, can simulate wound healing in circular, square, and
irregular wounds, as well as in arbitrary 3D wound morphologies, while remaining
compatible with the simplicity and limited experimental data in the literature. In
addition, models often adopted either a radius cut-off or a cell density threshold to
represent a healed state [1, 14, 28]. Both approaches, however, fail to account for the
actual spatial distribution of the wound healing across the wound domain. That is an
aspect that becomes critical for irregular, sharp-edged wounds (slits) and is especially
important for 3D wound models. To address this limitation, we also propose a new
spatial healing metric that is representative of spatial wound recovery over time.

In Sec. 2, we derive the finite element system that represents the cell diffusion
and proliferation. We derive the weak formulation and discuss relevant boundary con-
ditions. We include implementation details of the nonlinear solver and present the
model calibration of the solver. In Sec. 3, we verify the nonlinear solver considering
the well-studied rabbit wound. We compare the findings with [1] and we present the
calibration of the parameters to match experimental data in [29].

In Sec. 4, we analyze the effect of parameter p that adjusts the nonlinearity of
the diffusion. Moreover, we discuss the varying contact inhibition of the cells and
effect of these of the unwounded cell distributions. Based on the findings so far, we
then introduce the new metric in Sec. 5 and discuss its applicability on different
types/sizes/geometries of wounds in Sec. 6. Lastly, we present the conclusions and
future work in Sec. 7. In Appendix A, we present a verification case for the FEM code
using analytical model from [27]. We also show the mesh and timestep convergences
studies in Appendix B and detailed model calibration setup in Appendix C.

2 Methodology

2.1 Nonlinear diffusion equation

We solve the diffusion equation to model the cell activity over the wound domain. A
nonlinear logistic term is included in diffusion equation to take the proliferation into
account [1, 30, 31]:

0 .
o = DIV (6/60)"Vé] + 5¢(1 — ¢/do) in (1)
where ¢ is the cell density, ¢ is the time, ¢y is the unwounded cell density, p is an
integer that sets Fickian (p = 0) or non-fickian diffusion (p > 0), D is the diffusion



coefficient, and s is the proliferation/mitotic generation rate of the cells in the domain
Q.
2.2 Weak formulation

We use finite element method (FEM) to obtain cell activity on spatial wound domain.
Thus, we require an FEM discretization of (1) and its boundary conditions. We solve
a time dependent PDE so it requires time derivative discretization. For simplicity, we
define f = s¢(1— /o) and q(¢) = (¢/do)P for now, and we resubstitute them at the
end of the weak form derivation. We define a time level n and write

a¢ n+1
(%) =DIv g wer 4 oot )

We can use finite differences to approximate time derivative:
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where At is the time step. At time level ¢ = n + 1, we write backward Euler
discretization of (1):

¢n+1 ¢n

T = DIV (6" )V + 4

We now multiply the terms in (4) with test function v and integrate the terms over
the wound domain Q:

¢n+1 _ ¢n _ " " N
| o= [ DIV g v [ . (5)

We apply product rule for the contents of the first term for the right hand side in (5):
D[V - q(¢" V" v = DV - [g(¢" ") V" 0] + Dg(¢" ) Ve V. (6)

With the divergence theorem, the volume integral of the first term in (6) converts to
boundary integral:

/ DV - [q(¢™ )V Holdr = [ D(g(¢" )V v - idS). (1)
Q o0

where 7 denotes the outward normal vector for the boundary. If we apply Dirichlet
(¢p=¢p) condition, terms in (7) become zero. Then we substitute (7) into (5):

¢n+1_¢n _ n+1 n+1 n+1



Finally, rearranging terms in (8) and resubstitution of f and q(¢"*!) gives the
complete weak formulation of (1) in variational form:

F(¢"thv) = /Q[qs”“v — ¢"v 4+ ALD(¢" T [ po)PV " T Vv — Atsé(1 — ¢/ do)v)da = 0.
9)

Due to the presence of the logistic term, the finite element solution of (9) is non-
linear regardless of the value of p and it can apply to any geometrical dimension. We
note that the del operator V in Eq. (9) is V = a%i + %j + %k for cartesian grid
and V = %e,« + %a%eg + %ez for cylindrical grid with corresponding unit vectors. In
the calibration (Appendix C) and verification (Sec. 3) sections, we consider cylindrical
coordinates, then Eq. (9) becomes:

oo" 1 Ov

P 0) = [ 67710 — 60+ ALD(" o0 25— 5 = Atso(1 = ¢/ ou)ulrdr =0,
(10)

where 7 denotes the radial component of the cylindrical domain.

2.3 Initial and boundary conditions

For Eq. (1), the initial condition for all the cases is identical, the cell density on the
wound edge is set to one and zero elsewhere. We use Dirichlet and Neumann boundary
conditions (BCs) to model diffusion process in this paper. Dirichlet BC states that
there is a constant cell density on the boundary 0Qp:

¢=¢p ondp, (11)

where ¢p is the specified cell density. Neumann boundary implies a constant flux on
the boundary 9y in the normal direction:

0
D%zg on 00y, (12)

where g is the specified concentration flux. If g is equals to zero, that means that the
boundary is impermeable and cells accumulate over time. We present the numerical
setups for 1D radial wound and 2D circular, rectangular and irregular wound shapes in
Fig. 2. For the 1D cases, we use a Dirichlet boundary on the wound edge, ¢p(r,,t) =1
and we impose symmetry boundary condition at the wound center, as the surface
integral vanishes with » — 0 assuming cylindrical domain (Fig. 2a). For 2D cases, we
set a cartesian grid and impose Dirichlet boundaries on the wound edges (Fig. 2b,c).
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Fig. 2: Boundary conditions for (a) circular, (b) rectangular and (c) irregular wound
domains. Blue borders represent the wound edges where unwounded cell density is 1.0.

2.4 Nonlinear solver

We implement a nonlinear FEM code to solve Eq. (10) with the Newton solver and
present the implementation details in this section.

2.4.1 Open-source framework

We use the open-source FEM framework, FEniCSx project [32] that provides a frame-
work for solving partial differential equations (PDEs) with the finite element method
(FEM). It incorporates efficient kernels for matrix assembly to accelerate solution
times. Users define the PDE’s weak form using the high-level Unified Form Language
(UFL) [33] within a Python interface. The FEniCSx Form Compiler (FFCx) [34] pro-
cesses these UFL definitions to generate optimized low-level C code for local tensor
computations. DOLFINx then uses this code to assemble the global system. The result-
ing compiled forms can be represented as sparse matrices, which can be formatted
using the Portable Extensible Toolkit for Scientific Computation (PETSc) [35] via its
Python binding, petscdpy [36].

2.4.2 Newton solver

As we seek for nonlinear solutions, we implement a Newton solver using Newton’s
method. This method relies on initial guess and converges to the solution in incremen-
tal steps. We use a Krylov subspace method and preconditioners (KSP) to construct
solver object. We set Generalized Minimal Residual (GMRES) in KSP object and use
boomeramg preconditioner from hypre preconditioning library [37]. We converge to
the solution in incremental steps with the relative tolerance of 1E — 8. We present the
mesh and timestep convergence studies in Appendix B.

3 Wound healing model and verification

As a first measure, we introduce the healing metric presented in [1]. According to this
healing criterion, when the cell density in any finite element reaches 80%, the wound
is considered healed for the entire wound. For the circular wound (i.e., axisymmetric
1D model), the minimum ¢, is at the center (r = 0) at any time instant, t. The



total healing time, ¢, is therefore computed by tracking the time taken for the cell
density at the wound center to reach 0.8. For non-circular wounds, such as square or
irregular wound domains, we track the minimum ¢n,;, and identify the instant ¢ at
which: ¢nin > 0.8, which marks the moment the wound is considered healed. Fig. 3a
shows the wound radius, r, over time for actual experiments on a rabbit ear wound
(with an initial radius, ro = 0.517 cm), indicated as square blue markers from [29].
The 1D FEM model is then run using the respective diffusion coefficient and calibrated
mitotic generation rate (Appendix C): (D = 7.2x107% cm? / h, s = 0.0314 1/ h) that
captures the experimental data. We consider the Fickian diffusion by setting p = 0
and we set ¢g = 1.0 (i.e., non-chronic wounds) in FEM calculations. As such, the FEM
scheme captures both the experimental values and the trend quite well. In particular,
the FEM matched the healing time of the experiment: t;, = 599 hours. We present
a analytical verification case in Appendix A and more detailed calibration steps in
Appendix C.
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Fig. 3: Model verification data for the rabbit ear wound. (a) FEM model calibrated for
the radius—time profile of the rabbit ear wound case. The inset of the rabit is adapted
from [38]. (b) FEM prediction of cell density, ¢, progression across the wound radius
0 < r < rg at different times (¢ = 0 to ¢t = t;, = 600 h). Black curves indicate selected
checkpoints at ¢t = 0, 280, 460, and 480 h, highlighting the kinematic evolution of the
healing process. (c) Illustration of the wound healing front progressively closing in to
heal the wound. (d) Comparison of FEM results of mitotic generation rate with the
analytical prediction from the Maini equation against log D.

In addition to wound kinetics, we tracked the density of wound cells along the
wound radius from rg > r > 0, and plotted its profile at different time points on



Fig. 3b. The wound heals progressively from right to left towards the center of the
wound, 7 = 0. At the start (¢ = 0), the wound is a cavity and thus unhealed every-
where: ¢ = 0 throughout the domain except at its boundary (r = rg), where ¢ = 1.
With the passage of time, ¢ progressively increases from right to left until most of
the wound reaches ¢ > 0.8. A dotted black line is shown in the same plot to indi-
cate the instant at which the wound is considered healed (i.e., when ¢ > 0.8). We
have highlighted three checkpoints: t = 0, 280, 460, and 580 hours, with the corre-
sponding wound shapes displayed above each orange-highlighted line. Fig. 3c presents
a zoomed-out view of the wound at these time checkpoints to demonstrate the kine-
matics of the healing process in a circular wound (see Supplementary video: Circular).
Clearly, based on both Fig. 3b and Fig. 3c, the wound center is the last region to
start healing. Even when the wound is considered healed, 20% of the wound at r =0
remains unhealed. The solver, however, requires a relatively long time to asymptoti-
cally reach the fully healed state, where ¢(r = 0) = 1. Hence, a cutoff is applied to
yield a reasonable healing time, t;. After running the solver for an extremely long
time, we achieve an almost completely homogeneous contour map of the wound (i.e.,
fully blue, for ¢ > 599 h on Fig. 3c).

So far, the FEM model is capable of generating the healing time, t;, as a function
of the diffusion coefficient and mitotic rate: ¢, = f(D,s). While healing time is easily
measurable, the FEM can achieve the same healing duration, say t;, = 599 hours as in
the rabbit case [1], using different combinations of (D, s). Thus, the (D, s) design space
corresponding to a given t; that matches experimental data is non-unique. However,
there exists a reasonable range of diffusion coefficients, D = 10~7-1072 ¢cm?/h (or
10711-1077 em?/s), for which a corresponding s value can be calibrated. We use the
golden section search (Appendix C) algorithm to find the corresponding s values for
varied D (Fig. 3c). In other words, Fig. 3c shows the different possible combinations
of (D, s) that satisfy the healing time ¢, of the rabbit case. Ref. [1] actually proposes
a fixed value of D, and thus a single corresponding s is found, which also matches the
healing time t;, = 599 hours, as indicated by a square marker. Now, a third layer of
verification of the FEM model is to compare its D—s plot for ¢;, = 599 h with expression
from literature. We verify our FEM output for (D, s) for a specific t5, by comparing
the FEM results (in red) against the relation for s,, proposed by Maini in [31]:

02

m = D2

where v is the healing speed in cm/h and D is the diffusion coefficient in cm?/h.
This analytical model assumes a circular wound and is a fitted expression derived
from a numerical solution (i.e., empirical-analytical fit). We present the comparison
between spgy and s, in Fig. 3d. For proper comparison, the healing speed v for the
rabbit case was adopted from [1], corresponding to the same healing time t, = 599
h of the FEM results (shown in red). The diffusivity D is varied, and its respective
s values are computed using both the FEM and the analytical relation then plotted
accordingly. Clearly, the FEM results show good agreement with the analytical values
due to calibration, and they successfully capture the overall trend. This agreement
verifies the FEM model against the known analytical expression of Maini [31]. The
divergent trend of the s values for the diffusion coefficients is smaller than 10~¢ because

(13)



of the lack of data that have been used to obtain Eq. 13 in [31]. In addition to this
limitation, Eq. 13 can indeed be used to estimate the D—s relationship, but only if the
healing speed v is known, either through direct experiments or numerical modeling as
in here or simple numerical approach of [1].

4 Effect of contact inhibition, p

In its most generic form, the FEM model can compute the healing time as a function
of multiple parameters: t;, = f(D, s,p, ¢o). The variation in D—s has been introduced
above, and ¢ is set to ¢g = 1, throughout the manuscript to allow full wound healing
(i.e., no chronic wounds). The parameter p is a critical value that modulates cell
diffusion toward the wound domain. When p > 0, cells are capable of migrating more
rapidly in crowded regions, while p = 0 assumes a purely Fickian diffusion model, that
implies no contact inhibition due to cell crowding at the wound site. Fig. 4a, b and ¢
show respectively the wound density contour maps for a circular wound at the healed
state (i.e., ¢ = 0.8) for p = 0, 2, and 4. The even values of p are chosen arbitrarily,
simply to demonstrate a noticeable effect of increasing p on the contour maps. Overall,
increasing p has a strong influence on prolonging the healing time t;,. We also observe
that the wound healing front becomes sharper with higher p values. Consequently,
the wound center exhibits different levels of healing even when the cutoff criterion
(¢ = 0.8) is applied uniformly across all p cases. This closer examination of the role
of p reveals that the cutoff commonly adopted in the literature, and used here, is not
a fully accurate representation of healing. There is, therefore, a need for a spatially
resolved representation of wound healing that accounts for the distribution of cell
density ¢ across the wound domain. Throughout this work, however, we assume the
Fickian case (p = 0) for the wound model.

5 A metric for spatial healing, 3

Motivated by the observations in Sec. 4, even though the same cutoff ¢ = 0.8 was
applied, different spatial distributions of ¢ were observed (Fig. 3). These are leading
to varied levels of spatial healing, therefore we recognize a limitation in relying on a
fixed threshold for ¢. Since the FEM scheme described here is not restricted to 1D
but is also applicable to 2D (including complex, irregular shapes) and even 3D wound
topologies, this spatial discrepancy in ¢ becomes increasingly problematic. We are
therefore in need of a spatial healing metric that is general and applicable across 1D,
2D, and 3D domains (denoted by Q and having a volume V). To address this, we
propose to average the cell density ¢ across the wound domain, which we define as 3:

5= fQ ¢dV.
Jo @V
The cases shown in this manuscript are primarily 1D or 2D and, therefore, the
averaging is performed over area rather than volume (i.e., the integral is taken over
dA). Having 8 = 1 indicates a fully healed wound, meaning that every point across the
wound domain has reached ¢ = 1. In contrast, § — 0 implies a completely unhealed
(open) wound.

(14)
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Fig. 4: Unwounded cell distributions for varying p considering the circular rabbit
wound. The mitotic generation s and diffusion coeffecient D are fixed to observe the
effect of p on cell distribution and total healing time. The corresponding total healing
times are 599 h, 2181 h and 3628 h for p = 0, p = 2 and p = 4 respectively. For these
cases, ro = 0.517 cm, D = 7.6 x 107 ¢cm? /h and At =1 h.

To demonstrate the necessity of the spatial healing metric 5, we ran the model
for two different circular wound cases: (i) the rabbit ear wound (rg = 0.517 cm) from
[1], and (Fig 5a) (ii) an additional rat wound case (rg = 0.75 cm) from [26] (Fig 5b).
Considering the classic healing state cut-off ¢(0,¢) > 0.8, the FEM model was used to
conduct a full factorial parameter sweep over the D—s space for their respective wound
sizes and reported healing times: ¢, = 599 h for the rabbit case and t;, = 336 h for
the rat case. We performed the parameter sweep over D = [7.6 x 1076,1073] ¢cm?/h
and the corresponding s = [0.01,0.09] 1/h to evaluate our proposed spatial healing
metric 8 = f(D, s), shown in Fig. 5a and Fig.5b. Both figures use a fixed  range for
the color bar and contour limits. In these sweeps, we ignored the effects of p and ¢,
to isolate the impact of D and s.

Importantly and interestingly, variation in the S8 contour map, ranging from § =
0.88 to 0.999, is observed despite using the same healing state cutoff of ¢ = 0.8. In
light of the “healing front” described by Fisher [3], the healing efficacy is governed by
the ratio D/s.

An increase in D causes 3 to drop from 0.99 to 0.88 (a decrease of approximately
11%) under the same cutoff criterion. In contrast, increasing s tends to increase (3
at any fixed value of D, since higher proliferation increases ¢ throughout the wound
domain, producing a more uniform distribution and yielding higher values of 8 (up
to 8 ~ 0.999), particularly at low D. In other words, at low D and high s, cell
proliferation dominates but is not strongly supported by migration. However, because
the wound front advances slowly while mitotic generation remains high, ¢ accumulate
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(adapted from [38] (b) rat wounds (adapted from [39]).

almost uniformly behind the healing front, giving the appearance of a uniformly healed
wound. These high 3 values are typically reached only after longer healing durations
and therefore correspond to larger total healing times t;. Conversely low S (poor
spatial healing) requires less healing time, .

In contrast, for high D (that is, a rapidly advancing healing front) and low s, the
wound front becomes sharp, and most cell accumulation occurs near the rim of the
wound. This leads to significant spatial disparity and a lower average 3 (e.g., 8 = 0.88),
despite satisfying the same threshold-based healing criterion. Such low § values are
typically achieved over shorter healing times tj,.

For a given isoline on the (D, s, 8) surface, an increase in D must be accompanied
by a corresponding increase in s to preserve a uniform spatial distribution of ¢. At
high s and low D, a sharp peak of cells may form near the wound center and decay
gradually toward the front, whereas at high D and low s, the wound edge advances
faster than proliferation can replenish cells, resulting in a thin leading front and thick-
ened rims. Thus, maintaining a constant value of 5 requires that both D and s increase
together (following geometrically increasing contour isolines inure 5), preserving a bal-
anced migration—proliferation dynamics. This trend contrasts with the healing-time
surface t5(D,s) (Fig. 3), where multiple (D, s) combinations can yield the same tj.
In that case, a shorter healing time can result from either a higher s or higher D,
as one parameter can compensate for the other. However, such combinations do not
necessarily correspond to the same spatial healing uniformity in ¢.

12



The two cases (rabbit ear and rat wound) also have proposed representative mitotic
generation rates for their respective wounds [31, 40]. Using these values, the corre-
sponding diffusion coefficients D were computed inversely via the golden section search
algorithm (as discussed earlier in Appendix C). These specific (D, s) points are denoted
as circular markers on the contour plots. Notably, they exhibit significantly different
B values (e.g., 5 = 0.970, 0.994) despite applying the same healing cutoff (¢ = 0.8),
which was assumed to indicate that both have completed healing. In reality, however,
these two cases reflect different levels of healing, as revealed by their distinct 3 values.
This clearly shows that the assumption of complete healing based on a fixed cutoff
is not appropriate. Instead, the proposed metric 8 may be more accurate and more
spatially representative measure of healing.

6 Case study: Circular, square and irregular wound

In this section, we demonstrate how to use the proposed FEM model for different case
studies: (i) a 0.75 cm circular rat wound [26] (Fig. 6a), (ii) a 2 X 2 cm square rat
wound [6] (Fig. 6b), and (iii) a 9.11 cm? irregular wound with the additional challenge
of having an uninjured island at the center [41] (Fig. 6¢) (refer to the supplementary
material for raw coordinates). These figures show the kinematic progression of wound
healing over time using calibrated (D, s) combinations and the standard cutoff (¢ =
0.8). See Supplementary videos: Circular, square and irregular. We set At = 2h for 2D
cases in order to accelerate convergence. The model successfully captures the gradual
healing process from the periphery, regardless of how irregular the shape may be,
and shows how the wound progressively heals toward a single point. This convergence
point, where the wound fronts meet, is geometry-dependent. For symmetric shapes like
the circular and square wounds, it occurs at the center (i.e., »r =0 or (x = 0,y = 0)).
In contrast, for irregular shapes, the final healing point can be anywhere across the
domain—typically where it is farthest from the wound periphery (where ¢ = 1) and
vise versa. For example, the narrow region in the irregular wound case, indicated by
the white arrow in Fig. 6¢, is one of the first areas to heal, as the opposing wound
edges are closest in proximity and require the shortest distance to close.

Recall that the FEM model can now readily generate the healing time as a function
of parameters: t, = f(D, s). For each of the case studies, we show the corresponding
D—s parameter space and the resulting t;, as a contour map (Figs 6a,d; 6b,e; and 6¢,f).
We also superimpose a black curve on each of these maps, representing the calibrated
(D, s) combinations that capture the experimentally observed healing time in each case
(i, ii, iii). This iso-line (constant ¢5,) represents all combinations of (D, s) that produce
the same healing time, and analysts can move along it to explore different possible
diffusion—mitosis interactions that still match the observed wound healing behavior.
A single localized measurement of either D or s can then be used to pinpoint a
representative (D, s) pair along this iso-line. In other words, by taking known diffusion
coefficient values from the literature, we can identify a corresponding point on the
iso-line that accurately represents the wound healing process for that specific case.
This highlights that wound healing for a given ¢; can be achieved through different
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Fig. 6: 2D healing process in different time checkpoints for (a) circular, (b) rectangular
and (c) irregular shaped wounds. The D-s clusters for the circular (d) and (f) irregular
wounds share the same reference point (denoted as while circle with black border) with
D = 2.42 cm?/h and s = 0.05 1/h while the reference point for rectangular wound
has D = 1.24 ¢cm?/h and s = 0.05 1/h.

mechanisms, such as high motility with low mitotic generation, or low motility with
high mitotic generation, both resulting in the same overall healing time.

One way to use the FEM framework presented in this paper is to first measure the
healing time experimentally and then run the FEM model over a wide range of (D, s)
values to generate corresponding tj results. The measured t; can then be matched to
the iso-line corresponding to that value on the contour plot (similar to the black iso-
line shown previously). Next, by estimating either a D or s value, one can pinpoint a
representative (D, s) values along the iso-line. Interestingly, the wound healing process
may be compromised due to either low motility (low D) or low mitotic activity (low s),
and these contour maps allow analysts to visualize and analyze both of these distinct
diagnostic scenarios.

7 Conclusion

In this paper, we propose a new spatial healing metric that numerically represents the
healing progress for any 1D, 2D, or 3D representation of wounds. Our first test case
involved a circular wound model for a rabbit ear. For numerical computations, we
built a framework using finite element method. The FEM was used to solve a Fickian
diffusion equation augmented with a logistic nonlinear term to simulate the wound
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healing process as a function of diffusion coefficient D, mitotic generation rate s, and
cell contact inhibition modulated by the parameter p. In most cases, p was fixed,
representing the Fickian assumption. We implemented the nonlinear diffusion solver
using the open-source FEniCSx framework and its supporting components. Before
conducting parametric studies, we validated the FEM against experimental results
from the rabbit ear wound and verified it using the analytical relation proposed by
Maini. The FEM model was thus able to capture both the kinetics and kinematics of
the wound healing process.

We carried out a study on contact inhibition of cells, modulated by the parameter
p, which was found to slow down the healing process for higher ps, sharpen the healing
front. This reveals how using a single cutoff threshold to define a healed state may
not be accurate. Different values of p resulted in varying levels of healing at the
wound center, even when the same cutoff threshold was applied. To address this, we
introduced a spatial healing metric, 5, that captures the distribution of healing across
the wound domain. This metric proved to be sensitive to wound geometry as well as
D and s values, even under the same cutoff. This insight became particularly clear
when comparing different experimental cases: the rabbit wound versus the rat wound,
which produced contrasting 8 values despite having the same cutoff threshold.

Utilizing the power and tunability of the nonlinear solver developed in this work,
we carried out a full-factorial parametric sweep over the (D, s) space for three dif-
ferent wound geometries: circular, rectangular, and irregularly shaped wounds, each
calibrated using experimental healing times. As expected, higher diffusion and mitotic
generation rates led to faster healing times. However, we demonstrated the limita-
tions of the classic healing metric, as varying (D, s) combinations produced different
B values despite using the same ¢ cutoff for the healed state. Most importantly, we
showed the effectiveness of the proposed spatial metric, 8, in capturing healing pro-
gression across non-regular wound shapes. This metric provides a more accurate and
geometry-sensitive representation of wound healing compared to traditional cutoff-
based methods. The FEM model enables mapping of (D, s) combinations via iso-lines
on contour plots. Given a known healing time, the corresponding iso-line can be iden-
tified. Then, by estimating either D or s, a representative model can be selected.
Moving along the iso-line helps determine whether impaired healing is due to reduced
cell motility or limited mitotic activity, which offers a valuable diagnostic tool.

In future work, we aim to extend this framework to simulate 3D non-regular wound
shapes using the implemented nonlinear solver. Additionally, a one-way coupled dif-
fusion model will be developed to explore interactions between healing agents and
epidermal wounds.
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Supplementary information. The geometry data of the irregular wound for skin
island and outer boundaries are provided as supplementary material.
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Appendix A Solver verification

We verify the solver using an analytical solution proposed by [27];

w(z,t) = B [exp (m (1 n ‘g)) exp(—t) cos (m@) - 1} 0<x< N%'

(A1)
Eq. Al hold for certain spatially varying diffusivity field
B
D(u) = ,
=4

and mitotic generation term

R(u) = (1 —u)In(1 4+ B),
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in corresponding Fisher-KPP equation:
ou 0 ou

As indicated in [27], we impose u(z,0) of Eq. (A1) as an initial condition in our code
with § = 1. Solving this system in cartesian coordinates gives the results shown in
Fig. Al. The FEM results show agreement against the analytical solution proposed
by [27].

1.0 —  FEM

0.8 = Analytical

0.6
>

0.4

0.2

a= =88
S

07
g

0.01

0.00 025 0,50 0.75 1.00
X

Fig. A1l: Comparison of the results between our FEM code and [27] for § = 1.

Appendix B Mesh and timestep convergence

We perform mesh and time-step convergence studies in order to settle the mesh size
and time-step parameters for finite element calculations. We use the rabbit wound as
a convergence case. The convergence results are shown in Fig. B2. Using more than
120 elements stops changing the total healing time (Fig. B2a) so we use more than 120
degree 1 continuous Galerkin finite elements for the 1D radial domain. This indicates
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that cell size specified as Az < r/80. Inspecting Fig. B2b, time steps smaller than
At < 2 show negligible differences and we set the time step to be At = 1 h for 1D
case and At = 2 for 2D cases.
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Fig. B2: (a) mesh and (b) timestep convergence plots for the benchmark case. The
timesteps values are decreasing geometrically starting from 32 h and ending at 0.25 h.

Appendix C Model calibration for (D,s)

We verify our nonlinear solver based on the data presented in [1] and [29]. The healing
period of the wound on the rabbit ear is studied. We pick the Fickian diffusion case
where p = 0. We generate the 1D radial domain such that » = 0 implies the center
of the wound and r = ry implies the edge of the wound where cell density is 1.0
(unwounded). For calculating the wound healing distribution, number of elements in
1D domain is N = 200, timestep is At = 1h, the diffusivity coefficient is D = 7.2x 107
cm?/h and mitotic rate is s = 0.0288 1/h. We take the initial radius of the wound as
ro = 0.5 cm and healing speed is measured as 0.0207 cm/day [29]. We then solve the
(10). Imposing the Dirichlet boundary condition on r = Lg gives the initial condition
of the wounded domain. Unwounded cells start to spread and increase towards r = 0
from r = ro based on the parameters D and s. At the center of the wound (r = 0), we
apply Neumann boundary condition for allowing cell density to accumulate up to 1.0.
As ng indicates the unwounded cell density, it is a vector that contains cell density of
1.0 over the domain (we assume that wound will be completely healed). We calculate
the total healing time as 611.0 hours using FEM. This shows that the results of FEM
calculations agree very well with the total healing time 599 hours in [1]. We further
optimize the mitotic rate, s, to match the total healing time of 599 hours for constant
D =72 x 107% cm?/h. We also change the radius of the wound as ry = 0.517 cm to
match the experimental data in [29]. We use the golden section algorithm to find s
within the designated interval. The optimized mitotic rate for this case is calculated
as Sopt = 0.031418 /h, giving total healing time of 599 h, which compares very well
with the experimental data (Fig. 3a).
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